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Abstract 

Diffuse streaks were observed on an electron diffrac- 
tion pattern of Til.4382-4H. A model of an interlayer 
short-range order of Ti vacancies was proposed and 
examined by application of the matrix method for 
the one-dimensional disorder. The calculated diffuse 
intensity distribution explains the broad maxima 
observed. 

Introduction 

Polytypism was observed for titanium sulfide (Tronc 
& Huber, 1973; Legendre, Moret, Tronc & Huber, 
1975), and Tit÷xS2 ( x = 0 - 2 - 0 . 4 )  crystallizes most 
easily in the 4H-type structure. The superstructure of 
Tit.33S2-4H was first found by Bartram (1958). 
Samples of the composition near Tit.33S2 ( =  TiSt.5o) 
have been examined by powder X-ray diffractometry 
(Onoda, Saeki & Kawada, 1979): Tit.a7S2-4H ( =  
TiSt.46-4H) annealed at 773 or 973 K and Tit.32S2-4H 
(=TiSt .s l -4H) annealed at 773, 973 or 1173 K 
exhibited supercell reflections which were assigned 
to the order of Ti vacancies, while no supercell reflec- 
tion was observed in the powder pattern of TiI.aaS2-4H 
( = TiSt.al-4H). 

In the present paper, the appearance of diffuse 
streaks on an electron diffraction pattern of Ti~.43S2- 
4 H  is reported. An interlayer short-range-order 
model is proposed and examined by application of 
the matrix method which has been used for one- 
dimensional disorder (Kakinoki & Komura, 1965; 
Kakinoki, 1967; Onoda & Kawada, 1980). 

Results and discussion 

The diffraction patterns are fundamentally of the 4 H  
type (a = 3.438, c = 11.432 A). In the pattern with the 
incident beam perpendicular to the c axis, diffuse 
streaks appear as shown in Fig. 1. A section of the 
diffuse streaks indicates the hexagonal cell with A = 
v~a, and this hexagonal cell arises from an intralayer 
order of Ti vacancies. When the hexagonal supercell 
of v~a is regarded as a unit cell, reciprocal coordi- 
nates of the diffuse streaks are expressed by HK~ 
(H  - K # 3n), e.g. H = 1 and K = 0. Then the diffuse 
intensity distributions may be examined on the basis 
of the stacking disorder model. 

The 4H-type substructure and the superstructure 
analyzed for Til.a7S2-4H (Onoda et al., 1979) are 
shown in Fig. 2. The equidistant-layer approximation 
is employed for simplicity. Based on the hexagonal 
cell with A = x/3a, the structure of the 4 H  type with 
an intralayer order of Ti vacancies can be described 
in terms of the stacking sequence of the layer units 
whose sizes are expressed by using At, A2 and C 
shown in Fig. 2. Only the contribution of partially 
occupied Ti layers is necessary to consider the short- 

Experimental 

The powder samples of Til.4352-4H were synthesized 
as reported previously (Onoda et al., 1979) and 
annealed at 873, 1073 or 1273 K for one week and 
then immersed in cold water with their sealing silica 
tubes. The crystal fragments were obtained by crush- 
ing and electron diffraction patterns were taken using 
a 100kV electron microscope (Hitachi-500 type). 
Since the electron diffraction patterns thus obtained 
are found to be similar, the patterns of the sample 
annealed at 1073 K are used for discussion. 

0108-7681/86/010001-03501.50 

Fig. 1. Electron diffraction patterns from Tit.43S2-4H. The incident 
beam is parallel to the [110] direction of the 4H type (hexagonal 
unit cell: a, c). Indices (H, K and L) are based on the hexagonal 
cell with A = x/3a and C = c/2. 
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Table 1. Probability table based on the layers illustrated in Fig. 3 

Q 1 0 2 Q 3  P1 P2 P3 Q 2 0 3 Q 1  P2 P3 P '  0 3 0 1 0 2  P3 P1 P2 
\ q /  \ 1 /  \ q /  \ 1 /  \ q /  \ 1 /  

P1 Q1 P2 Q2 P3 Q3 

0.0 0.5 0-5 
0.5 0.0 0.5 
0.5 0.5 0.0 

0.0 0.5 0.5 
0.5 0.0 0.5 
0.5 0-5 0.0 

0-5 0.0 0-5 
0.5 0.5 0-0 
0.0 0.5 0.5 

0.5 0.0 0.5 
0.5 0.5 0.0 
0.0 0.5 0.5 

0.5 0.5 0.0 
0.0 0.5 0.5 
0.5 0.0 0.5 

0.5 0.5 0.0 
0.0 0.5 0.5 
0.5 0.0 0.5 

range order of Ti and vacancies. All six possible 
configurations of these layers are shown in Fig. 3. 
The six layers for stacking are divided into two 
groups, P and 0, with respect to the positions of the 
layers. Each group is divided into three types such 
as P1, P2 and P3 with respect to the Ti sites in a 
partially occupied Ti layer. In order to maintain the 
structure in the 4H type, a P-type layer (P1, P2 or 
P3) must be followed only by a Q-type layer (Q1, 
Q2 or Q3) and vice versa. Since the composition is 
richer in Ti than Ti1.33S2, excess  Ti atoms are assumed 
to occupy the vacancy sites. Therefore, layer form 
factors of P1 and Q1 for the calculation of the diffuse 
intensity distribution are given by 

Vp,= L'/2(~, r/)fTi(1 + t~e*+ t~e) 

[] El 

Fig. 2. The 4H-type substructure and the superstructure analyzed 
for Til.37S 2. O S; • Ti; ~ partially occupied Ti site; [] vacancy. 
The primitive hexagonal cell is adopted and S atoms are elimi- 
nated for the superstructure, although the superstructure has a 
monoclinic unit cell (4H - Mv~av/3b2c). Relations between the 
vectors shown above are expressed as A~ = a~ - a2, A2 = a~ + 2a2 
and C = c/2. 

and 

re,= L1/2(~, n)fTi(1 + ~ *  + ~e)~r, 

where L(s ~, r/) is the Laue function involving A* and 
A2*, fTi is the atomic scattering amplitude for electrons 
of the Ti ion, ~ is the occupancy factor of Ti in 
the vacancy sites, e = e x p [ i 2 z r ( H - K ) / 3 ] ,  or= 
exp [i2zr(H + K) /3 ]  and e* = e 2. Since only the rela- 
tive intensity distribution is of interest, the essential 
terms of Vp1 and Vol are fTi and fTio" respectively. 
P2 and P3 are obtained from P1 by shifts of ½ and 

in the [110] direction of the hexagonal cell with 
x/3a, and Q2 and Q3 are obtained from Q1 in the 
same manner. Then 

Vp2 = Vp1E* , Vp3= VplE , VQ2= VQI E:~ 

and VQ3= VQIE. 

P1 P2 P3 

Q1 Q2 Q3 

Fig. 3. Possible configurations of the partially occupied Ti layer 
with intralayer ordering. • Ti; [] vacancy. 
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Fig. 4. Intensity distributions of scattering calculated for the model 
of Table 1. Diffuse intensity distributions corresponding to 
streaks are obtained for H - K = 1 and H - K = 2. 
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Since diffuse intensity distributions calculated for 
the models with s = 1, where s is the number of layer 
units necessary to distinguish the stacking disorder, 
did not resemble the broad maxima observed in Fig. 
1, the various models with s = 2 were calculated. The 
results for the model of Table 1 were in agreement 
with the observed diffuse maxima, as shown in Fig. 4. 

In the model of Table 1, the sequences such as 
Q1-P1-Q1, in which the second-neighbor layers are 
the same, do not occur, and Q1-P1-Q2 and Q1-P1- 
Q3 occur with the same probability and so on. The 
distance between the ordered Ti sites which belong 
respectively to the second-neighbor layers are shorter 
for Q1-P1-Q1 than for Q1-P1-Q2 or Q1-P1-Q3 
and so on. The calculated results excluded sequences 
such as Q1-P1-Q1, Q1-P2-Q1, Q1-P3-Q1, Q2- 
P1-Q2 etc. This fact is reasonable with respect to the 
Coulomb interaction between Ti atoms and vacancies. 

The diffuse streaks have not yet been detected in 
X-ray photographs. The calculated intensities shown 
in Fig. 4 are the results of kinematical scattering 

theory. On the assumption that the geometry of the 
diffuse maxima is not affected by dynamical interac- 
tions, the model of Table 1 gives an explanation for 
the diffuse maxima observed. The designation 
Til.43S2-4H-Hx/~av/3a(SRO) is adopted for the struc- 
ture discussed above, according to the notation sys- 
tem for polytypes and superstructures described pre- 
viously (Onoda & Saeki, 1983). 
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Abstract 
Tetrahedrally close packed (t.c.p.) metal or alloy crys- 
tal structure types are those in which the interstices 
are exclusively tetrahedral and the coordination types 
are restricted to a particular set of four, which are 
here called P, Q, R, and X, with fully triangulated 
coordination polyhedra and coordination numbers 
(CN) respectively 16, 15, 14, and 12. At least 20 of 
these are known. Yarmolyuk & Kripyakevich [Kris- 
tallografiya (1974), 19, 539-545; Soy. Phys. Crystal- 
logr. 19, 334-3371 have shown empirically that the 
coordination formula of a t.c.p, structure, which may 
be represented in general as PpQqR~Xx, can be refor- 
mulated as (PX2)i(Q2R2X3)j(R3X)k (where i,j, k are 
integers or rational fractions) in the cases of all of 
the 16 t.c.p, structure types then known. This has also 
proved true for the four structure types discovered 
since. It is shown that the relationship results from 
the requirement that the structure average of the 
dihedral angles in the interstitial tetrahedra must 
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closely match the appropriately weighted average of 
the up to four 'cluster' average dihedral angles, where 
a cluster is defined as an atom plus the 16, 15, 14, or 
12 atoms of its coordination shell, and the associated 
28, 26, 24, or 20 tetrahedra, respectively, coming 
together at the central atom. These cluster averages 
are themselves within about 0.1 ° of the dihedral angle 
in the regular tetrahedron, 70.529 °. Given the integers 
p, q, and r for a t.c.p, formula, with this model x can 
be calculated correctly for all 20 known t.c.p, struc- 
tures (although x covers a wide range, up to 49), 
without any assumptions from Yarmolyuk & 
Kripyakevich being invoked. A related problem, con- 
cerning the close packing of atoms in amorphous 
metallic glasses, has been treated by some workers in 
relation to the {3,3, 5} regular polytope in four- 
dimensional space. We conclude that while such treat- 
ments may provide useful insights for t.c.p, structures, 
they do not yet satisfactorily explain the Yarmolyuk 
& Kripyakevich observation. 
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